How do you differentiate f(x)= sqrt (lnx^2-x)?

2 Answers
Jun 24, 2018

f'(x)=1/(2sqrt(lnx^2-x))(2/x-1)

Explanation:

We will differentiate f using the chain rule:
y=f(g(x))=>y'=f'(g(x))g'(x)
Therefore, f'(x)=1/(2sqrt(ln(x^2)-x))d/dx (lnx^2-x)
To differentiate lnx^2-x, recognize that lnx^2=2lnx so d/dx (lnx^2-x)=2/x-1. Therefore, f'(x)=1/(2sqrt(lnx^2-x))(2/x-1).

Given: f(x)=\sqrt{\ln(x^2)-x}

Differentiating w.r.t. x as follows

\frac{d}{dx}f(x)=\frac{d}{dx}\sqrt{\ln(x^2)-x}

f'(x)=\frac{1}{2\sqrt{\ln(x^2)-x}}\frac{d}{dx}(\ln(x^2)-x)

f'(x)=\frac{1}{2\sqrt{\ln(x^2)-x}}(\frac{1}{x^2}\cdot 2x-1)

f'(x)=\frac{2-x}{2x\sqrt{\ln(x^2)-x}}