How do you differentiate f(x) = Tan^(-1) (x/2)f(x)=tan−1(x2)?
1 Answer
Mar 23, 2018
Explanation:
•color(white)(x)d/dx(tan^-1x)=1/(1+x^2)
"differentiate using the "color(blue)"chain rule"
"Given "f(x)=g(h(x))" then"
f'(x)=g'(h(x))xxh'(x)larrcolor(blue)"chain rule"
f(x)=tan^-1(x/2)
rArrf'(x)=1/(1+(x/2)^2)xxd/dx(1/2x)
color(white)(rArrf'(x))=(1/2)/(1+x^2/4)xx4/4
color(white)(rArrf'(x))=2/(4+x^2)