How do you differentiate f(x)=(x^(1/2))(lnx)f(x)=(x12)(lnx)?

1 Answer
Feb 25, 2017

1/(2sqrtx) lnx+ 1/sqrtx12xlnx+1x

Explanation:

This needs to be differentiated using the product rule:

d/dxf(x)g(x)=g(x)f'(x)+f(x)g'(x)

d/dx x^(1/2)= 1/2x^(-1/2)= 1/(2sqrtx)

d/dxlnx= 1/x

d/dxf(x)=1/(2sqrtx)lnx+sqrtx/x=1/(2sqrtx)+1/sqrtx