How do you differentiate F(x) = (x)arctan x - (Ln ((x^2)+1))/2?

1 Answer
May 7, 2017

F'(x)=arctanx

Explanation:

We have to use the product rule on xarctanx and the chain rule on 1/2ln(x^2+1):

F(x)=xarctanx-1/2ln(x^2+1)

F'(x)=(d/dxx)arctanx+x(d/dxarctanx)-1/2(1/(x^2+1))(d/dx(x^2+1))

F'(x)=arctanx+x(1/(1+x^2))-1/2(1/(1+x^2))(2x)

F'(x)=arctanx+x/(1+x^2)-x/(1+x^2)

F'(x)=arctanx