How do you differentiate g(x) = 1/sqrtarctan(x^2-1) ?

1 Answer
Jun 10, 2018

g'(x) = (-x)/(arctan^(3/2)(x^2-1)((x^2-1)^2+1)

Explanation:

g(x) = 1/(sqrt((arctan(x^2-1))

= [arctan(x^2-1)]^(-1/2)

Apply power rule and chain rule

g'(x) -1/2[arctan(x^2-1)]^(-3/2) * d/dx arctan(x^2-1)

Apply standard derivative and chain rule

g'(x) -1/2[arctan(x^2-1)]^(-3/2) * 1/(((x^2-1)^2+1)) * d/dx (x^2-1)

= -1/2[arctan(x^2-1)]^(-3/2) * 1/(((x^2-1)^2+1)) * 2x

= (-x)/[arctan^(3/2)(x^2-1)((x^2-1)^2+1)]