How do you differentiate g(x) = sqrt(arc csc(x^3+1) ?

1 Answer
Jan 4, 2016

Supposing |(x^3+1)|>1, we can proceed using the specific rule for arccsc(f(x)) and also chain rule for the square root.

Explanation:

  • (arccscu)'=(-u')/(|u|sqrt(u^2-1))

  • Chain rule: (dy)/(dx)=(dy)/(dv)(dv)/(dx)

Renaming v=arccsc(x^3+1), we have g(x)=sqrt(v)

(dg(x))/(dx)=1/(2v)((-3x^2)/(|x^3+1|sqrt(x^3(x^3+2))))=((-3x^2)/(arccsc(x^3+1)|x^3+1|sqrt(x^3(x^3+2))))