How do you differentiate log_2(x^2sinx^2) log2(x2sinx2)?

1 Answer
Jun 26, 2016

= 2/(ln 2) ( 1/x + x cot x^2)=2ln2(1x+xcotx2)

Explanation:

(log_2(x^2sinx^2))'

first we need to shift the base into natural logs as these are just made for calculus

so using log_a b = (log_c b)/(log_c a)

so
log_2(x^2sinx^2) = (ln (x^2sinx^2))/(ln 2) = 1/(ln 2)ln (x^2sinx^2)

then we use another standard result namely that

(ln f(x))' = 1/(f(x))*f'(x)

so ( 1/(ln 2)ln (x^2sinx^2))' = 1/(ln 2)( ln (x^2sinx^2))'

= 1/(ln 2)1/ (x^2sinx^2) (x^2sinx^2)' \qquad square

for (x^2sinx^2)' we use the product rule

(x^2sinx^2)' = (x^2)'sinx^2 + x^2 (sinx^2)'

= 2x sinx^2 + x^2 (sinx^2)' \qquad star

for (sinx^2)' we use the chain rule so

(sinx^2)' = cos x^2 (2x) = 2x cos x^2

pop that back into star to get

(x^2sinx^2)' = 2x sinx^2 + x^2 * 2x cos x^2
\implies (x^2sinx^2)' = 2x sinx^2 + 2x^3 cos x^2

pop that back into square for

( 1/(ln 2)ln (x^2sinx^2))' = 1/(ln 2)1/ (x^2sinx^2) (x^2sinx^2)'

= 1/(ln 2)1/ (x^2sinx^2) (2x sinx^2 + 2x^3 cos x^2)

this can be simplified in any number of ways, so i'm going for brevity

= 2/(ln 2) ( 1/x + x cot x^2)