(log_2(x^2sinx^2))'
first we need to shift the base into natural logs as these are just made for calculus
so using log_a b = (log_c b)/(log_c a)
so
log_2(x^2sinx^2) = (ln (x^2sinx^2))/(ln 2) = 1/(ln 2)ln (x^2sinx^2)
then we use another standard result namely that
(ln f(x))' = 1/(f(x))*f'(x)
so ( 1/(ln 2)ln (x^2sinx^2))' = 1/(ln 2)( ln (x^2sinx^2))'
= 1/(ln 2)1/ (x^2sinx^2) (x^2sinx^2)' \qquad square
for (x^2sinx^2)' we use the product rule
(x^2sinx^2)' = (x^2)'sinx^2 + x^2 (sinx^2)'
= 2x sinx^2 + x^2 (sinx^2)' \qquad star
for (sinx^2)' we use the chain rule so
(sinx^2)' = cos x^2 (2x) = 2x cos x^2
pop that back into star to get
(x^2sinx^2)' = 2x sinx^2 + x^2 * 2x cos x^2
\implies (x^2sinx^2)' = 2x sinx^2 + 2x^3 cos x^2
pop that back into square for
( 1/(ln 2)ln (x^2sinx^2))' = 1/(ln 2)1/ (x^2sinx^2) (x^2sinx^2)'
= 1/(ln 2)1/ (x^2sinx^2) (2x sinx^2 + 2x^3 cos x^2)
this can be simplified in any number of ways, so i'm going for brevity
= 2/(ln 2) ( 1/x + x cot x^2)