How do you differentiate log_3 (2x) / x^2?

1 Answer
Nov 7, 2016

(1-2ln(2x))/(x^3ln(3))

Explanation:

The first step is to write log_3(2x) as ln(2x)/ln(3) through the change of base formula.

y=log_3(2x)/x^2=ln(2x)/(ln(3)x^2)

ln(3) is just a constant, don't forget this:

y=1/ln(3) ln(2x)/x^2

When differentiating this, use the quotient rule:

dy/dx=1/ln(3)((d/dxln(2x))x^2-ln(2x)(d/dxx^2))/(x^2)^2

These derivatives are:

  • d/dxln(2x)=1/(2x)(d/dx2x)=1/(2x)*2=1/x

This required the chain rule. The following is just the power rule:

  • d/dxx^2=2x

So:

dy/dx=1/ln(3)(1/x(x^2)-ln(2x)*2x)/x^4

dy/dx=1/ln(3)(x-2xln(2x))/x^4

dy/dx=1/ln(3)(1-2ln(2x))/x^3

dy/dx=(1-2ln(2x))/(x^3ln(3))