How do you differentiate r/(r^2 + 1)^(1/2)?

1 Answer
May 5, 2018

f'(r)=1/((r^2+1)^(3/2)

Explanation:

Here,

f(r)=r/sqrt(r^2+1)

"Using "color(blue)"Quotient Rule:",w.r.t. r

f'(r)=(sqrt(r^2+1)d/(dr)(r)-rd/(dr)(sqrt(r^2+1)))/(sqrt(r^2+1))^2

=(sqrt(r^2+1)(1)-rxx1/(cancel2sqrt(r^2+1))(cancel2r))/(r^2+1)

=(r^2+1-r^2)/((r^2+1)sqrt(r^2+1))

f'(r)=1/((r^2+1)^(3/2)