How do you differentiate sin(arctanx)?

2 Answers
Aug 28, 2017

1/(1+x^2)^(3/2)

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larr" chain rule"

rArrd/dx(sin(arctanx))

=cos(arctanx)xxdx(arctanx)

=(cos(arctanx))/(1+x^2)

=1/(1+x^2)xx1/(sqrt(1+x^2)

=1/(1+x^2)^(3/2)

Aug 29, 2017

1/(x^2+1)^(3/2).

Explanation:

Let, y=sin(arc tanx)=sintheta, theta=arc tanx," so that, "tantheta=x.

Now, tantheta=x rArr csc^2theta=1+cot^2theta=1+1/tan^2theta,

:. csc^2theta=1+1/x^2=(x^2+1)/x^2 rArr sintheta=1/csctheta=x/sqrt(x^2+1).

Hence, y=sintheta=x/sqrt(x^2+1).

Using the Quotient Rule for Diffn.,

dy/dx={sqrt(x^2+1)d/dx(x)-xd/dx(sqrt(x^2+1))}/{sqrt(x^2+1)}^2...(ast).

Here, by the Chain Rule,

d/dx(sqrt(x^2+1))=d/dx(x^2+1)^(1/2),

=1/2*(x^2+1)^(1/2-1)*d/dx(x^2+1),

=1/2*(x^2+1)^(-1/2)*(2x).

rArr d/dx(sqrt(x^2+1))=x/sqrt(x^2+1).

Utilising this, in (ast), we get,

dy/dx={sqrt(x^2+1)*1-x*x/sqrt(x^2+1)}/(x^2+1),

={(x^2+1-x^2)/sqrt(x^2+1)}/(x^2+1),

rArr dy/dx=1/(x^2+1)^(3/2), is the desired Diffn.