How do you differentiate sqrt(x^2-16)?

2 Answers
Jul 26, 2016

d/(dx) sqrt(x^2-16) = x/sqrt(x^2-16)

Explanation:

Use a combination of the power rule and chain rule to find:

d/(dx) sqrt(x^2-16)

= d/(dx) (x^2-16)^(1/2)

= 2x*1/2 (x^2-16)^(-1/2)

=x/sqrt(x^2-16)

The original function has domain (-oo, -4] uu [4, oo)

The original function has undefined slope for x=+-4, hence the derivative has domain (-oo, -4) uu (4, oo).

Jul 26, 2016

x/sqrt(x^2-16).

Explanation:

Let y=sqrt(x^2-16)={(x-4)(x+4)}^(1/2)

:. lny=1/2{ln(x-4)(x+4)}=1/2{ln(x-4)+ln(x+4)}

:. d/dx(lny)=1/2{1/(x-4)+1/(x+4)}

Using the Chain Rule for,

d/dx(lny)=d/dy(lny)*dy/dx=1/y*dy/dx

:. 1/y*dy/dx=1/2{(x+4+x-4))/((x-4)(x+4)).

;. dy/dx=(yx)/(x^2-16)=x/(x^2-16)*sqrt(x^2-16)

:. y'=x/sqrt(x^2-16).