How do you differentiate (x+1)^8?

1 Answer
Feb 18, 2016

Use the Chain Rule to get
color(white)("XXX")(dcolor(white)("x")(x+1)^8)/(dx) = 8(x+1)^7

Explanation:

Chain Rule for Derivatives
color(white)("XXX")(dcolor(white)("x")g(f(x)))/(dx) = color(red)((dcolor(white)("x")g(f(x)))/(dcolor(white)("x")f(x))) * color(blue)((dcolor(white)("x")(f(x)))/(dx))

Let
color(white)("XXX")f(x)=x+1
and
color(white)("XXX")g(x)=x^8

Note that
color(white)("XXX")(color(blue)((dcolor(white)("x")f(x))/(dx))=color(blue)(1))
and
color(white)("XXX")(dcolor(white)("x")(g(x)))/(dx)=8x^7
color(white)("XXXXXX")rarr color(red)( (dcolor(white)("x")g(f(x)))/(dcolor(white)("x")f(x)))=8(f(x))^7 = color(red)(8(x+1)^7)

So
(dcolor(white)("x")(x+1)^8)/(dx) = color(red)(8(x+1)^7)*color(blue)(1)