How do you differentiate x/(e^(2x))?
1 Answer
May 31, 2016
Explanation:
differentiate using the
color(blue)"quotient and chain rules" f(x) = g(x).h(x) then
f'(x)=(h(x).g'(x)-g(x).h'(x))/(h(x)^2
d/dx(f(g(x))=f'(g(x)).g'(x)
"-------------------------------------------------------------"
g(x)=xrArrg'(x)=1
h(x)=e^(2x)rArrh'(x)=e^(2x).2=2e^(2x)
"------------------------------------------------------------"
Substitute these values into f'(x) in the quotient rule
f'(x)=(e^(2x).1-x.2e^(2x))/(e^(2x))^2=(e^(2x)-2xe^(2x))/e^(4x)
=(e^(2x)(1-2x))/e^(4x)=(1-2x)/e^(2x)