How do you differentiate y=2^(3^(x^2))y=23x2?

1 Answer
Jan 30, 2017

(dy)/(dx)=2^(3^(x^2))xx3^(x^2)ln18xx xdydx=23x2×3x2ln18×x

Explanation:

As y=2^(3^(x^2)y=23x2, we have

lny=3^(x^2)ln2lny=3x2ln2 or 3^(x^2)=lny/ln23x2=lnyln2

i.e. x^2ln3=ln(lny/ln2)x2ln3=ln(lnyln2)

and hence differentiating we get

2ln3xx x=1/((lny/ln2))xx1/ln2xx1/y(dy)/(dx)2ln3×x=1(lnyln2)×1ln2×1ydydx

or 2ln3xx x=1/lnyxx1/y(dy)/(dx)2ln3×x=1lny×1ydydx

and (dy)/(dx)=yxxlnyxx2ln3xx xdydx=y×lny×2ln3×x

= 2^(3^(x^2))xx3^(x^2)ln2xx2ln3xx x23x2×3x2ln2×2ln3×x

= 2^(3^(x^2))xx3^(x^2)ln18xx x23x2×3x2ln18×x