How do you differentiate y=2cos(x)+6cos^-1(x)?

2 Answers
Jun 17, 2017

Given: y=2cos(x)+6cos^-1(x)

Differentiate each term:

dy/dx=(d(2cos(x)))/dx+(d(6cos^-1(x)))/dx

Bring the constants outside:

dy/dx=2(d(cos(x)))/dx+6(d(cos^-1(x)))/dx

We know that d/dxcos(x) = -sin(x)

dy/dx = -2sin(x) +6(d(cos^-1(x)))/dx

We know that d/dxcos^-1(x) = -1/sqrt(1-x^2):

dy/dx = -2sin(x) -6/sqrt(1-x^2)

Jun 17, 2017

dy/dx=-2sinx-6/sqrt(1-x^2)

Explanation:

"using the "color(blue)"standard derivatives"

• d/dx(cosx)=-sinx

• d/dx(cos^-1x)=-1/(sqrt(1-x^2)

y=2cosx+6cos^-1x

rArrdy/dx=-2sinx-6/(sqrt(1-x^2)