How do you differentiate y =5^x log_5 x?
1 Answer
Apr 26, 2017
Explanation:
differentiate using the
color(blue)"product rule"
"Given " y=g(x)h(x)" then "
dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"
"using the following "color(blue)"standard derivatives"
• d/dx(a^x)=a^xlna
• d/dx(log_ax)=1/(xlna)
"here "g(x)=5^xrArrg'(x)=5^xln5
"and " h(x)=log_5xrArrh'(x)=1/(xln5)
rArrdy/dx=5^x. 1/(xln5)+log_5x.5^xln5
color(white)(rArrdy/dx)=5^x/(xln5)+5^xln5log_5x