How do you differentiate y =5^x log_5 x?

1 Answer
Apr 26, 2017

dy/dx=5^x/(xln5)+5^xln5log_5x

Explanation:

differentiate using the color(blue)"product rule"

"Given " y=g(x)h(x)" then "

dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"

"using the following "color(blue)"standard derivatives"

• d/dx(a^x)=a^xlna

• d/dx(log_ax)=1/(xlna)

"here "g(x)=5^xrArrg'(x)=5^xln5

"and " h(x)=log_5xrArrh'(x)=1/(xln5)

rArrdy/dx=5^x. 1/(xln5)+log_5x.5^xln5

color(white)(rArrdy/dx)=5^x/(xln5)+5^xln5log_5x