How do you differentiate Y = (cos x)^2 - cos x?

1 Answer
Mar 13, 2018

dy/dx=sinx-sin2x

Explanation:

"differentiate "(cosx)^2" using the "color(blue)"chain rule"

"Given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

rArrd/dx((cosx)^2)=2cosx xxd/dx(cosx)

color(white)(xxxxxxxxxxxx)=-2sinxcosx=-sin2x

y=(cosx)^2-cosx

rArrdy/dx=-sin2x-(-sinx)

color(white)(rArrdy/dx)=sinx-sin2x