How do you differentiate y=csc^-1(4x^2)?

1 Answer
Nov 12, 2016

dy/dx=(-2)/(xsqrt(16x^4 - 1)) (=(-2)/(xsqrt((4x^2+1)(4x^2-1))))

Explanation:

y=csc^-1(4x^2) <=> cscy=4x^2

Differentiating implicitly we have:
cscy=4x^2
-cscycotydy/dx=8x
-(4x^2)cotydy/dx=8x
cotydy/dx=-2/x ..... [1]

Now 1 + cot^2A -= csc^2A
:. 1 + cot^2y = 16x^4
:. cot^2y = 16x^4 - 1
:. coty = sqrt(16x^4 - 1)

Substituting into [1] we get:
sqrt(16x^4 - 1)dy/dx=-2/x

:. dy/dx=(-2/x)/sqrt(16x^4 - 1)
:. dy/dx=(-2)/(xsqrt(16x^4 - 1)) (=(-2)/(xsqrt((4x^2+1)(4x^2-1))))