How do you differentiate y=csc^-1(x/2)y=csc1(x2)?

1 Answer
Nov 30, 2016

dy/dx=(-2)/(x^2sqrt(1-4/x^2)dydx=2x214x2

Explanation:

y=csc^-1(x/2)y=csc1(x2)

cscy = x/2cscy=x2

siny = 2/xsiny=2x

cosy dy/dx = -2/x^2cosydydx=2x2 (Implicit differentiation and Power rule)

dy/dx = -2/x^2 * 1/cosydydx=2x21cosy

Since cos^2y + sin^2y =1cos2y+sin2y=1

cos^2y = 1-sin^2y = 1-(2/x)^2cos2y=1sin2y=1(2x)2

cosy = sqrt(1-4/x^2)cosy=14x2

dy/dx = (-2)/(x^2sqrt(1-4/x^2)dydx=2x214x2