How do you differentiate y= e^(1-x) y=e1x?

1 Answer
Jun 26, 2016

y' = - e^(1-x)

Explanation:

y=e^(1-x) = e*e^(-x).
y' = (e*e^(-x)) '=e (e^(-x)) ' = e(-e^(-x))
= -( e*e^(-x))
= -( e^(1-x))

or using logs

y=e^(1-x)
ln y=1-x
1/y y' = -1
y' = -y = - e^(1-x)

slopes okay.
45° at y' = 1 looks okay.
y'-2.718281828*((2.718281828)^((x)^-2)).
areas don't look okay

graph{(y-2.718281828/(2.718281828^x))=0 [-1, 4, -0.5, 2]}.

graph{(y-2.718281828*((2.718281828)^x^(-2)))=0 [-1, 4, -0.5, 2]}