How do you differentiate y=(e^(2x)+1)^3?

1 Answer
Dec 10, 2016

You have to use the chain rule: f(g(x))' = f'(g(x)) * g'(x)

Explanation:

In this case g(x) = e^(2x) + 1 , so we have:

g'(x) = 2 e^(2x), again by the chain rule.

And f'(e^(2x) + 1) = 3 (e^(2x) + 1)^2.

Putting it all together we have:

3 (e^(2x) + 1)^2 * 2 e^(2x) = 6 (e^(2x) + 1)^2 * e^(2x)