How do you differentiate y= ln( 1/x)y=ln(1x)?

1 Answer
Jul 31, 2016

= - 1/x=1x

Explanation:

doing it the long way:

d/dx ln (f(x)) = 1/(f(x)) * f'(x)

here f(x) = 1/x = x^(-1) so by the power rule d/dx (x^(-1)) = - x^(-2) = -1/x^2

so

d/dx ln (1/x) = 1/(1/x) * -1/x^2 = - 1/x

speeding up a little:

ln (1/x) = ln x^(-1) = - ln x

d/dx (- ln x) = - d/dx (ln x) = - 1/x (x)' = - 1/x