How do you differentiate y= ln(1-x^2)^(1/2)?

1 Answer
May 3, 2018

dy/dx=(-x)/(1-x^2)

Explanation:

color(green)(lna^b=blna)

y=ln(1-x^2)^(1/2)=1/2ln(1-x^2)

color(green)(d/dxlnu=1/u*color(blue)((du)/dxrarrcolor(red)("Chain Rule")

Differentiate,

dy/dx=1/2*(1/(1-x^2))*color(blue)((0-2x)

Simplify,

dy/dx=(-x)/(1-x^2)