How do you differentiate y=ln(10/x)y=ln(10x)?
1 Answer
Sep 10, 2016
Explanation:
We need to know that:
log(A/B)=log(A)-log(B)log(AB)=log(A)−log(B) d/dxln(x)=1/xddxln(x)=1x d/dx("constant")=0ddx(constant)=0
Thus:
y=ln(10/x)y=ln(10x)
y=ln(10)-ln(x)y=ln(10)−ln(x)
dy/dx=0-1/xdydx=0−1x
dy/dx=-1/xdydx=−1x