How do you differentiate y=ln ln(2x^4)?
1 Answer
Oct 15, 2016
Explanation:
y=ln(ln(2x^4))
Through the chain rule, we see that:
d/dxln(color(red)f(x))=1/color(red)f(x)*d/dxcolor(red)f(x)
So, here, we see that:
dy/dx=d/dxln(color(red)ln(2x^4))=1/color(red)ln(2x^4)*d/dxcolor(red)ln(2x^4)
Note that we will use the same rule again to find
dy/dx=1/ln(2x^4) * [d/dxln(color(red)(2x^4))]=1/ln(2x^4) * [1/color(red)(2x^4)*d/dxcolor(red)(2x^4)]
Differentiating
dy/dx=1/ln(2x^4) * 1/(2x^4) * 8x^3
dy/dx=1/ln(2x^4) * 1/x * 4
dy/dx=4/(xln(2x^4))