How do you differentiate y= ln sqrt( 6x^2+8)?
1 Answer
May 1, 2018
Explanation:
"differentiate using the "color(blue)"chain rule"
"given "y=f(g(x))" then"
dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"
rArrdy/dx=1/(sqrt(6x^2+8))xxd/dx(sqrt(6x^2+8))
d/dx(sqrt(6x^2+8))=d/dx((6x^2+8)^(1/2))
=1/2(6x^2+8)^(-1/2)xxd/dx(6x^2+8)
=(6x)/(sqrt(6x^2+8))
rArrdy/dx=1/(sqrt(6x^2+8))xx(6x)/(sqrt(6x^2+8))
color(white)(rArrdy/dx)=(6x)/(6x^2+8)=(3x)/(3x^2+4)