How do you differentiate y=ln((x-1)/(x^2+1))?

1 Answer
Jul 27, 2016

dy/dx=(-x^2+2x+1)/((x^2+1)(x-1))

Explanation:

y=ln((x-1)/(x^2+1))

y=ln(x-1)-ln(x^2+1)

Use quotient rule of logarithms

Now differentiate

dy/dx=1/(x-1)-1/(x^2+1) * d/dx(x^2+1) Use chain rule

dy/dx=1/(x-1)-1/(x^2+1)*2x

dy/dx=1/(x-1)-(2x)/(x^2+1) Take the lcd as ((x-1) (x^2+1)

dy/dx=((x^2+1)/((x^2+1)(x-1)) )-((2x)(x-1))/((x^2+1)(x-1)) )
dy/dx=(x^2+1-2x^2+2x)/((x^2+1)(x-1)
dy/dx=(-x^2+2x+1)/((x^2+1)(x-1))