How do you differentiate y=(lnx)^4?

1 Answer
Aug 4, 2017

dy/dx=(4(lnx)^3)/x

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larr" chain rule"

y=(lnx)^4

rArrdy/dx=4(lnx)^3xxd/dx(lnx)

color(white)(rArrdy/dx)=(4(lnx)^3)/x