How do you differentiate y=lnx/x^20?

1 Answer
Oct 31, 2016

dy/dx=(x^19-20x^19 ln x)/x^40

Explanation:

y=lnx/x^20

Use quotient rule (f/g)^' = (gf'-fg')/g^2

f=ln x, g= x^20

f'=1/x, g'=20x^19

dy/dx=(gf'-fg')/g^2

dy/dx=(x^20*1/x-lnx *20x^19)/(x^20)^2

dy/dx=(x^19-20x^19 ln x)/x^40