How do you differentiate y = log_2 (x^4sinx)y=log2(x4sinx)?

1 Answer
Jun 28, 2016

y' = (4 sin x + x cos x)/(ln 2 * xsinx)

Explanation:

y = log_2 (x^4sinx)

first switch into natural logs as these are calculus friendly

y = (ln (x^4sinx))/ln 2 = implies ln 2 \ y = ln (x^4sinx)

so therefore by the chain rule

ln2 \ y' = 1/(x^4sinx)*(x^4sinx)'

by the product rule

(x^4sinx)' = (x^4)' sin x + x^4 (sin x)'
= 4x^3 sin x + x^4 cos x
= x^3(4 sin x + x cos x)

so the derivative is
ln2 \ y' = 1/(x^4sinx)*x^3(4 sin x + x cos x)
= (4 sin x + x cos x)/(xsinx)

so

y' = (4 sin x + x cos x)/(ln 2 * xsinx)