How do you differentiate y = log_3 [((x+1)/(x-1))^ln3]?

1 Answer
Aug 28, 2016

2/(1-x^2)

Explanation:

Use log_ba=ln a/ln b, ln c^n = n ln c and ln(m/s)=ln m - ln n

Here,

y=log_3[((x+1)/(x-1))^ln 3]

=ln((x+1)/(x-1))^ln 3/ln 3

=ln 3 ln[(x+1)/(x-1)]/ln 3

=ln(x+1)-ln(x-1)

y'=1/(x+1)(x+1)'-1/(x-1)(x-1)'#

=1/(x+1)(1)-1/(x-1)(1)

=((x-1)-(x+1))/((x+1)(x-1))

=2/(1-x^2)