How do you differentiate y=sec1(x2x)?

1 Answer
Jan 6, 2018

dydx=2x1(x2x)(x2x)21

Explanation:

y=sec1(x2x)

x2x=secy

differentiate wrt x

2x1=secytanydydx

dydx=2x1secytany(1)

now

1+tan2x=sec2xtany=(sec2y1)

so substituting back into (1)

dydx=2x1(x2x)(x2x)21

which can be simplified further as required