How do you differentiate y=(sinx)^(x)?

1 Answer
Mar 30, 2015

The answer is: y'=e^(xlnsinx)(lnsinx+xcotx).

Remembering the exponential-logarithmic formula:

[f(x)]^g(x)=e^(ln[f(x)]^g(x))=e^(g(x)lnf(x),

than our functio becomes:

y=e^(xlnsinx),

and so, for the chain rule:

y'=e^(xlnsinx)*(1*lnsinx+x*1/sinx*cosx)=

=e^(xlnsinx)(lnsinx+xcotx),

or, if you want:

y'=(sinx)^x(lnsinx+xcotx).