How do you differentiate y=sqrt(2-e^x)?

1 Answer
Apr 4, 2017

Use the chain rule:
(d(f(g(x))))/dx = (df(g))/(dg)(d(g(x)))/dx

Explanation:

Let g(x) = 2 - e^x then it follows that:

(d(g(x)))/dx= -e^x

f(g) = sqrt(g)

and

(df(g))/(dg) = 1/(2sqrtg)

Substituting this into the chain rule:

(d(sqrt(2-e^x)))/dx =1/(2sqrtg)-e^x

(d(sqrt(2-e^x)))/dx =-e^x/(2sqrtg)

Reverse the substitution for g:

(d(sqrt(2-e^x)))/dx =-e^x/(2sqrt(2-e^x))