How do you differentiate y=(x^2lnx)^4?

1 Answer
Oct 30, 2016

dy/dx = 4x(x^2lnx)^3 ( 1 + 2lnx )

Explanation:

y = (x^2lnx)^4

By the chain rule,
d/dxf(g(x)) =f'(g(x))g'(x) or, dy/dx=dy/(du)(du)/dx ,
we have:

dy/dx = 4(x^2lnx)^3 d/dx(x^2lnx)

Next, we need to use the product rule;
d/dx(uv)=u(dv)/dx+v(du)/dx
to get:

dy/dx = 4(x^2lnx)^3 { (x^2)(d/dxlnx) + (d/dxx^2)(lnx) }
:. dy/dx = 4(x^2lnx)^3 { (x^2)(1/x) + (2x)(lnx) }
:. dy/dx = 4(x^2lnx)^3 ( x + 2xlnx )
:. dy/dx = 4x(x^2lnx)^3 ( 1 + 2lnx )