How do you differentiate y = (x)^(e^(2x))?
1 Answer
Mar 18, 2018
dy/dx = e^(2x) \ x^(e^(2x)) \ { 1/x + ln x^2 }
Explanation:
We have:
y = x^(e^(2x))
We can take natural logarithms and use implicit logarithmic differentiation:
ln y = ln {x^(e^(2x))}
\ \ \ \ \ = e^(2x) \ ln x
Then we can use the product rule:
1/y \ dy/dx = e^(2x) \ 1/x + 2e^(2x) \ ln x
:. 1/y \ dy/dx = e^(2x) \ { 1/x + 2ln x }
:. dy/dx = y \ e^(2x) \ { 1/x + ln x^2 }
:. dy/dx = x^(e^(2x)) \ e^(2x) \ { 1/x + ln x^2 }
:. dy/dx = e^(2x) \ x^(e^(2x)) \ { 1/x + ln x^2 }