How do you differentiate y=xarcsinx+sqrt(1+x^2)y=xarcsinx+1+x2?

1 Answer
Mar 31, 2018

y'=x/sqrt(1-x^2)+arcsinx+x/sqrt(1+x^2)

Explanation:

dy/dx(xarcsinx+sqrt(1+x^2))=d/dxxarcsinx+d/dxsqrt(1+x^2)

For d/dxarcsinx, recall that d/dxarcsinx=1/sqrt(1-x^2) and apply the product rule:

d/dxxarcsinx=x/sqrt(1-x^2)+arcsinx

For d/dxsqrt(1+x^2), the Chain Rule will be needed:

d/dxsqrt(1+x^2)=1/(2sqrt(1+x^2))*d/dx(1+x^2)=x/sqrt(1+x^2)

Combining the above derivatives, we get

y'=x/sqrt(1-x^2)+arcsinx+x/sqrt(1+x^2)