How do you divide (m^3n^2)/(m^-1n^3)m3n2m1n3?

1 Answer
Jul 14, 2015

(m^3n^2)/(m^(-1)n^3) = m^4n^-1m3n2m1n3=m4n1

Explanation:

First, let's use the distributive rule to separate the monomials.

(m^3n^2)/(m^(-1)n^3) = (m^3/m^-1)(n^2/n^3)m3n2m1n3=(m3m1)(n2n3)

Now we use the quotient rule: when dividing monomials that have the same base, we subtract the exponents.

So

(m^3/m^-1)(n^2/n^3) = (m^(3-(-1)))(n^(2-3)) =m^(3+1)n^-1(m3m1)(n2n3)=(m3(1))(n23)=m3+1n1

(m^3n^2)/(m^(-1)n^3) = m^4n^-1m3n2m1n3=m4n1