How do you evaluate 48^(4/3)*8^(2/3)*(1/6^2)^(3/2) ?

1 Answer
May 2, 2016

48^(4/3)* 8^(2/3)*(1/6^2)^(3/2)=2^(13/3)/3^(1/3)

Explanation:

48^(4/3)* 8^(2/3)*(1/6^2)^(3/2)

= (2xx2xx2xx2xx3)^(4/3)* (2xx2xx2)^(2/3)*((2xx3)^(-2))^(3/2)

=(2^4xx3)^(4/3)* (2^3)^(2/3)*(2xx3)^(-2xx3/2)

= 2^(4xx4/3)*3^(4/3)*2^(3*2/3)*(2xx3)^(-3)

= 2^(16/3)* 3^(4/3)* 2^2*2^(-3)*3^(-3)

= 2^(16/3+2-3)xx3^(4/3-3)

= 2^(13/3)xx3^(-1/3)

= 2^(13/3)/3^(1/3)