How do you evaluate int 1/sqrt(2-x)dx from 1 to 2?

2 Answers
Aug 2, 2017

int_1^2 1/sqrt(2-x)dx = -int_1^2 (d(2-x))/sqrt(2-x)

int_1^2 1/sqrt(2-x)dx = -int_1^2 (2-x)^(-1/2)d(2-x)

int_1^2 1/sqrt(2-x)dx = - [(2-x)^(1/2)/(1/2)]_1^2

int_1^2 1/sqrt(2-x)dx = - [2sqrt(2-x)]_1^2 = -2sqrt(2-2)+2sqrt(2-1) = 2

Aug 2, 2017

The answer is =2

Explanation:

We need

intx^ndx=x^(n+1)/(n+1)+C(n!=-1)

We are going to perform a substitution

Let u=2-x, =>, du=-dx

Therefore,

int(dx)/sqrt(2-x)=int(-du)/sqrtu

=-intu^(-1/2du)=(-u^(1/2))/(1/2)

=-2sqrtu=-2sqrt(2-x)+C

So,

int_1^2(dx)/sqrt(2-x)=[-2sqrt(2-x)]_1^2

=(0)-(-2*1)

=2