int_1^2 1/(sqrtx sqrt(4-x))dx=int_1^2 dx/sqrt(4x-x^2)=
=int_1^2 dx/sqrt(4-4+4x-x^2)=int_1^2 dx/sqrt(4-(x^2-4x+4))=
=int_1^2 dx/sqrt(4-(x-2)^2)=1/2int_1^2 dx/sqrt(1-((x-2)/2)^2)=I
(x-2)/2=t => dx=2dt
x=1 => t=-1/2
x=2 => t=0
I=int_(-1/2)^0 dt/sqrt(1-t^2)=arcsint|_(-1/2)^0
I=0-(-pi/6)=pi/6