How do you evaluate int (1/(sqrt(x)sqrt(4-x)))dx for [1, 2]?

1 Answer
Sep 27, 2015

pi/6

Explanation:

int_1^2 1/(sqrtx sqrt(4-x))dx=int_1^2 dx/sqrt(4x-x^2)=

=int_1^2 dx/sqrt(4-4+4x-x^2)=int_1^2 dx/sqrt(4-(x^2-4x+4))=

=int_1^2 dx/sqrt(4-(x-2)^2)=1/2int_1^2 dx/sqrt(1-((x-2)/2)^2)=I

(x-2)/2=t => dx=2dt

x=1 => t=-1/2

x=2 => t=0

I=int_(-1/2)^0 dt/sqrt(1-t^2)=arcsint|_(-1/2)^0

I=0-(-pi/6)=pi/6