How do you evaluate int arcsin(x) / x^2 dx from 1/2 to 1?

1 Answer
Feb 27, 2017

Substitution

Explanation:

I = int_{1/2}^1 (\sin^(-1)(x))/(x^2) dx
y = \sin^(-1)(x)
x = \sin y
dx = \cosy dy
I = int_{pi/6}^{pi/2} (y \cosy )/(\sin^2y) dy
= int_{pi/6}^{pi/2} (y\coty\cscy dy)
= int_{pi/6}^{pi/2} y.d(-csc y)
Use the integration by parts.

I= [-y csc y] + \int_{pi/6}^{pi/2} csc y dy
= [-(pi/2)+(pi/3)]-ln|csc y + cot y|
= ln|2+sqrt(3)| -(pi/6)