How do you evaluate int sin^2(5x)cos^2(5x) dx for [7, 11]?

1 Answer
Sep 16, 2015

1/2+1/80sin40

Explanation:

Lets transform integrand using formulas:
sin^2(x/2)=(1-cosx)/2, cos^2(x/2)=(1+cosx)/2

In our case:

sin^2(5x)cos^2(5x)=(1-cos10x)/2 (1+cos10x)/2=

=(1-cos^2(10x))/4=1/4-1/4cos^2(10x)=

=1/4-1/4*(1+cos20x)/2=1/4-1/8-1/8cos20x=

=1/8-1/8cos20x

We have (using substitution t=20x, dt=20dx, dx=dt/20 for cos20x part):

int(1/8-1/8cos20x)dx = 1/8x-1/8*1/20sin20x+C=
=1/8x-1/160sin20x+C=I

Changing the values we get:

I=11/8-1/160sin220-7/8+1/160sin40=
=1/2-1/160(sin220-sin140)=
=1/2-1/160*2cos(360/2)sin(80/2)=
=1/2-1/80(-1)sin40=1/2+1/80sin40