How do you evaluate int sqrt (1-x^2) dx for [-1, 1]?

1 Answer
Sep 19, 2015

pi/2

Explanation:

let x=sintheta
sqrt(1-x^2)=sqrt(1-sin^2theta)=abs(costheta)
in -pi/2 to pi/2 cos theta is positive so abscostheta =costheta
changing limits
if x=-1 then theta =-pi/2
if x=1 then theta = pi/2
dx=costheta d(theta)
then
int_-1^1sqrt(1-x^2)dx changes to int_(-pi/2)^(pi/2)cos^2thetad(theta)
=int_(-pi/2)^(pi/2)(1+cos2theta)/2d(theta)
=int_(-pi/2)^(pi/2)d(theta)/2+int_(-pi/2)^(pi/2)(cos2theta)/2d(theta)
=1/2(pi/2-(-pi/2)+1/2(1/2(sin(pi)-sin(-pi)))
=pi/2