How do you evaluate Log_sqrt3 243 log√3243?
1 Answer
Explanation:
We should try to write
An example of the method we should attempt can be shown more easily in evaluating
log_2 8=log_2 2^3=3log_2 2=3log28=log223=3log22=3
The first step we should take for
log_sqrt3 243=log_sqrt3 3^5log√3243=log√335
But we still haven't addressed the issue that we want a base of
We should use the fact that
log_sqrt3 3^5=log_sqrt3 ((sqrt3)^2)^5log√335=log√3((√3)2)5
Using the rule that
log_sqrt3 ((sqrt3)^2)^5=log_sqrt3 (sqrt3)^10log√3((√3)2)5=log√3(√3)10
Now, simplify as was done earlier.
log_sqrt3 (sqrt3)^10=10log_sqrt3sqrt3=10log√3(√3)10=10log√3√3=10