How do you evaluate the definite integral int (14x^6)dx(14x6)dx from [-2,2]?

1 Answer
Dec 17, 2016

512512

Explanation:

using the color(blue)"power rule for integration"power rule for integration

color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(intax^ndx=a/(n+1)x^(n+1))color(white)(2/2)|)))

rArrint_-2^2(14x^6)dx=14/7[x^7]_-2^2

=2[x^7]_-2^2

Evaluate the upper and lower limits and subtract upper - lower

=2[(2^7)-(-2)^7)]=2(128-(-128))=512