How do you evaluate the definite integral int (2x)/(1+x^2) from [0,1]?

1 Answer
Aug 13, 2016

int_0^1 (2x)/(1+x^2)d x=0.6931471806=l n(2)

Explanation:

int_0^1 (2x)/(1+x^2)d x=?

"Substitute "u=1+x^2
d u=2x*d x

int (2x)/(1+x^2)d x=int(d u)/u=l n (u)

"Undo substitution"

int_0^1 (2x)/(1+x^2)d x=|l n(1+x^2)|_0^1

int_0^1 (2x)/(1+x^2)d x=[l n(1+1^2]-[1+0^2]

int_0^1 (2x)/(1+x^2)d x=[l n (2)]-[l n(1)]

l n(2)=0.6931471806
l n(1)=0

int_0^1 (2x)/(1+x^2)d x=0.6931471806-0

int_0^1 (2x)/(1+x^2)d x=0.6931471806