How do you evaluate the definite integral int dx/(4-x)dx4x from [0,2][0,2]?

2 Answers
Sep 18, 2016

ln abs(2)ln|2|

Explanation:

We have: int_(0)^(2) (dx) / (4 - x)20dx4x

First, let's evaluate int (dx) / (4 - x)dx4x.

Let u = 4 - x => (du) / (dx) = - 1 => du = - dxu=4xdudx=1du=dx:

= int - (1) / (u) dx=1udx

= - int (1) / (u) du=1udu

= - ln abs(u)=ln|u|

We can now replace uu with 4 - x4x:

= - ln abs(4 - x)=ln|4x|

Now, let's evaluate the definite integral with the interval [0, 2][0,2]:

= (- ln abs(4 - (2))) - (- ln abs(4 - (0)))=(ln|4(2)|)(ln|4(0)|)

= - ln abs(2) + ln abs(4)=ln|2|+ln|4|

= - ln abs(2) + ln abs(2^(2))=ln|2|+ln22

Using the laws of logarithms:

= - ln abs(2) + 2 ln abs(2)=ln|2|+2ln|2|

= ln abs(2)=ln|2|

Sep 18, 2016

ln2ln2.

Explanation:

Let I=int_0^2 dx/(4-x)I=20dx4x

We subst. 4-x=t :. -dx=dt, or, dx=-dt

Next, we change the limits of Integral :

4-x=t, x=0 rArr t=4, and, x=2 rArr t=2. Hence,

I=int_4^2 -dt/t=int_2^4 dt/t=[ln|t|]_2^4=ln4-ln2.

:. I=ln(4/2)=ln2.