How do you evaluate the definite integral int dx/xdxx from [1/e,e][1e,e]?

2 Answers
Oct 28, 2016

2

Explanation:

int_(1/e)^e(dx)/x=[lnx]_(1/e)^ee1edxx=[lnx]e1e

=lne-ln(1/e)=lneln(1e)

=lne-[ln1-lne]=lne[ln1lne]

=1-0+1=10+1

=2=2

Oct 28, 2016

The answer is 22

Explanation:

The integral is intdx/x=lnx + Cdxx=lnx+C

So the integral is intdx/x=(lnx)dxx=(lnx)

So from (1/e,e)(1e,e),
we have intdx/x=lne-ln(1/e)=lne-ln1+lnedxx=lneln(1e)=lneln1+lne

As lne=1lne=1 and ln1=0ln1=0
So we have finally intdx/x=1-0+1=2dxx=10+1=2