How do you evaluate the definite integral int sin3x from [0,pi]?

2 Answers
Aug 29, 2017

2/3

Explanation:

int_0^(pi)sin3xdx

nowd/(dx)(cos3x)=-3sin3x

:.int_0^(pi)sin3xdx=[-1/3cos3x]_0^pi

=-1/3{[cos3x]^pi-[cos3x]_0}

=-1/3(cos3pi-cos0)

=-1/3(-1-1)

-1/3xx-2

=2/3

Aug 29, 2017

int_0^pi sin3x = 2/3

Explanation:

Using:

d/dx{cosax}=-asinax

Then:

int_0^pi sin3x = [-1/3cos3x]_0^pi
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = -1/3(cos3pi - cos 0)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = -1/3(-1- 1)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2/3